- 本文主要介绍了如何在昇腾上,使用pytorch对经典的图神经网络GCN在论文引用Cora数据集上进行分类训练的实战讲解。内容包括GCN背景介绍、模型特点介绍、GCN网络架构剖析与GCN网络模型代码实战分析等等。本文的目录结构安排如下所示:GCN网络背景介绍模型特点介绍GCN网络架构剖析GCN网络用于Cora数据集分类实战 GCN网络背景介绍多层感知机、卷积神经网络、循环神经网络和自编码器等深... 本文主要介绍了如何在昇腾上,使用pytorch对经典的图神经网络GCN在论文引用Cora数据集上进行分类训练的实战讲解。内容包括GCN背景介绍、模型特点介绍、GCN网络架构剖析与GCN网络模型代码实战分析等等。本文的目录结构安排如下所示:GCN网络背景介绍模型特点介绍GCN网络架构剖析GCN网络用于Cora数据集分类实战 GCN网络背景介绍多层感知机、卷积神经网络、循环神经网络和自编码器等深...
- 本实验主要介绍了如何在昇腾上,使用pytorch对经典的图神经网络GAT在论文引用数据集Pubmed上进行分类训练的实战讲解。内容包括GAT网络创新点分析、图注意力机制原理与架构剖析、多头注意力机制分析与GAT网络模型代码实战分析等等。本实验的目录结构安排如下所示:GAT网络创新点分析图注意力机制原理与架构分析多头注意力机制分析GAT网络用于Pubmed数据集分类实战 GAT网络创新点分析注... 本实验主要介绍了如何在昇腾上,使用pytorch对经典的图神经网络GAT在论文引用数据集Pubmed上进行分类训练的实战讲解。内容包括GAT网络创新点分析、图注意力机制原理与架构剖析、多头注意力机制分析与GAT网络模型代码实战分析等等。本实验的目录结构安排如下所示:GAT网络创新点分析图注意力机制原理与架构分析多头注意力机制分析GAT网络用于Pubmed数据集分类实战 GAT网络创新点分析注...
- 本文主要介绍如何在昇腾上使用pytorch对推荐系统中经典的网络模型Din进行训练的实战讲解,使用数据集是Amazon中book数据集,主要内容分为以下几个模块:Din网络创新点介绍Din网络架构剖析及搭建Activation Unit介绍Attention模块Din网络构建使用Amazon-book数据集训练Din网络实战Amazon-book数据集介绍Amazon-book数据集预处理训... 本文主要介绍如何在昇腾上使用pytorch对推荐系统中经典的网络模型Din进行训练的实战讲解,使用数据集是Amazon中book数据集,主要内容分为以下几个模块:Din网络创新点介绍Din网络架构剖析及搭建Activation Unit介绍Attention模块Din网络构建使用Amazon-book数据集训练Din网络实战Amazon-book数据集介绍Amazon-book数据集预处理训...
- PyTorch 实现 Vggnet图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的Vggnet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括Vggnet模型创新点介绍 、Vggnet网络架构剖析 与Vgg网络模型代码实战分析等等。本实验的目录结构安排如下所示:Vggnet网络模型创新点介绍Vggnet的网络架构剖析Vggnet网络模型代码实现分析Vggne... PyTorch 实现 Vggnet图像分类本实验主要介绍了如何在昇腾上,使用pytorch对经典的Vggnet模型在公开的CIFAR10数据集进行分类训练的实战讲解。内容包括Vggnet模型创新点介绍 、Vggnet网络架构剖析 与Vgg网络模型代码实战分析等等。本实验的目录结构安排如下所示:Vggnet网络模型创新点介绍Vggnet的网络架构剖析Vggnet网络模型代码实现分析Vggne...
- 借助华为开发者空间提供的免费昇腾NPU资源的Notebook进行代码开发,深入了解如何利用Python中预装的库来进行数据清洗。 借助华为开发者空间提供的免费昇腾NPU资源的Notebook进行代码开发,深入了解如何利用Python中预装的库来进行数据清洗。
- 接上一章节内容,将ONNX模型拆分成loop算子部分和非loop算子部分后,分别转换成OM模型,并用for循环替换loop算子计算逻辑,比较OM模型和ONNX模型的推理结果是否一致,验证结果如果一致则证明该方案有效。 onnx模型转om loop算子前面的图-Aatc --model=./mode_loop_input2_i_cond.onnx --framework=5 \ --o... 接上一章节内容,将ONNX模型拆分成loop算子部分和非loop算子部分后,分别转换成OM模型,并用for循环替换loop算子计算逻辑,比较OM模型和ONNX模型的推理结果是否一致,验证结果如果一致则证明该方案有效。 onnx模型转om loop算子前面的图-Aatc --model=./mode_loop_input2_i_cond.onnx --framework=5 \ --o...
- 方案背景当在线推理的速度无法满足客户要求,使用atc工具将onnx转为om模型走离线推理路径时,遇到NPU不支持LOOP算子的问题,本文提供一种解决方案。本方案的设计思路是,onnx文件分成loop算子和不含loop算子的两部分,把loop算子的子图提取出来,单独推理。实际操作中可能需要分成3份乃至更多,因此,本方案使用于关键路径上的loop算子,否则工作量会很大。 构造包含loop算子的... 方案背景当在线推理的速度无法满足客户要求,使用atc工具将onnx转为om模型走离线推理路径时,遇到NPU不支持LOOP算子的问题,本文提供一种解决方案。本方案的设计思路是,onnx文件分成loop算子和不含loop算子的两部分,把loop算子的子图提取出来,单独推理。实际操作中可能需要分成3份乃至更多,因此,本方案使用于关键路径上的loop算子,否则工作量会很大。 构造包含loop算子的...
- ais_bench提供的python API可供使能基于昇腾硬件的离线模型(.om模型)推理。具体介绍可参考[API_GUIDE](https://gitee.com/ascend/tools/blob/master/ais-bench_workload/tool/ais_bench/API_GUIDE.md#api%E7%AE%80%E4%BB%8B)下面列举几个常用的API推理场景使用方... ais_bench提供的python API可供使能基于昇腾硬件的离线模型(.om模型)推理。具体介绍可参考[API_GUIDE](https://gitee.com/ascend/tools/blob/master/ais-bench_workload/tool/ais_bench/API_GUIDE.md#api%E7%AE%80%E4%BB%8B)下面列举几个常用的API推理场景使用方...
- 动态BatchSize OM推理以档位1 2 4 8档为例,设置档位为2,本程序将获取实际模型输入组Batch,每2个输入为一组,进行组Batch。示例命令:python3 -m ais_bench --model ./inference/om/dynamic_batch_size_det.om --input ./inference/input/ --output ./inference... 动态BatchSize OM推理以档位1 2 4 8档为例,设置档位为2,本程序将获取实际模型输入组Batch,每2个输入为一组,进行组Batch。示例命令:python3 -m ais_bench --model ./inference/om/dynamic_batch_size_det.om --input ./inference/input/ --output ./inference...
- 推理环境准备 ais_bench推理工具简介昇腾离线OM模型的推理后端是ACL(Ascend Computing Language),其底层采用C实现,后来在ACL基础上又做了一套Python接口,命名为pyACL,为了方便开发,华为工程师又基于pyacl开发出一款推理工具ais_bench,此工具支持使用命令进行快捷地推理,并测试推理模型的性能(包括吞吐率、时延),同时ais_bench... 推理环境准备 ais_bench推理工具简介昇腾离线OM模型的推理后端是ACL(Ascend Computing Language),其底层采用C实现,后来在ACL基础上又做了一套Python接口,命名为pyACL,为了方便开发,华为工程师又基于pyacl开发出一款推理工具ais_bench,此工具支持使用命令进行快捷地推理,并测试推理模型的性能(包括吞吐率、时延),同时ais_bench...
- 本章节介绍 ONNX 模型如何转化为 OM 模型,并在昇腾AI处理器上做离线推理。昇腾张量编译器(Ascend Tensor Compiler,简称ATC)是异构计算架构CANN体系下的模型转换工具, 它可以将开源框架的网络模型或Ascend IR定义的单算子描述文件(json格式)转换为昇腾AI处理器支持的.om格式离线模型。ATC功能详见:https://www.hiascend.com... 本章节介绍 ONNX 模型如何转化为 OM 模型,并在昇腾AI处理器上做离线推理。昇腾张量编译器(Ascend Tensor Compiler,简称ATC)是异构计算架构CANN体系下的模型转换工具, 它可以将开源框架的网络模型或Ascend IR定义的单算子描述文件(json格式)转换为昇腾AI处理器支持的.om格式离线模型。ATC功能详见:https://www.hiascend.com...
- 本节介绍 PP-OCRv4 模型如何转化为 ONNX 模型。 环境准备需要准备 PaddleOCR、Paddle2ONNX 模型转化环境,和 ONNXRuntime 推理环境。 安装 Paddle2ONNXPaddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,安装命令如下:python3 -m pip install paddle2onnx 安装 ON... 本节介绍 PP-OCRv4 模型如何转化为 ONNX 模型。 环境准备需要准备 PaddleOCR、Paddle2ONNX 模型转化环境,和 ONNXRuntime 推理环境。 安装 Paddle2ONNXPaddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,安装命令如下:python3 -m pip install paddle2onnx 安装 ON...
- 性能优化问题定界在通过分析 profiling 文件找出性能瓶颈后,接下来将介绍相关的优化方法。算子时长主要由计算时间和调度时间两部分构成,下面将分别对计算时间长和调度时间长这两种情况进行探讨。 计算时间长的情况分析与优化计算时间长可能由以下三种情况导致: 算子运行于 AI_CPU若底层未对 AI_CORE 提供支持,就必须开发新的算子;若已有相关支持,计算时间长大概率是由 64 位数据类... 性能优化问题定界在通过分析 profiling 文件找出性能瓶颈后,接下来将介绍相关的优化方法。算子时长主要由计算时间和调度时间两部分构成,下面将分别对计算时间长和调度时间长这两种情况进行探讨。 计算时间长的情况分析与优化计算时间长可能由以下三种情况导致: 算子运行于 AI_CPU若底层未对 AI_CORE 提供支持,就必须开发新的算子;若已有相关支持,计算时间长大概率是由 64 位数据类...
- 性能调优思路性能优化是一项系统性工作,建议采用 “分析 - 定位 - 优化” 的流程,通过性能分析工具定位瓶颈后实施针对性优化。通过 profiling 工具获取算子级性能数据定位性能瓶颈点,主要涉及算子计算时间与调度通信时间。常用优化策略中,计算时间过长需依靠算子自身优化升级,可收集算子的 shape 和 dtype 向算子开发部门提交工单并跟踪进展;调度过程包含多个环节,目前最突出的问... 性能调优思路性能优化是一项系统性工作,建议采用 “分析 - 定位 - 优化” 的流程,通过性能分析工具定位瓶颈后实施针对性优化。通过 profiling 工具获取算子级性能数据定位性能瓶颈点,主要涉及算子计算时间与调度通信时间。常用优化策略中,计算时间过长需依靠算子自身优化升级,可收集算子的 shape 和 dtype 向算子开发部门提交工单并跟踪进展;调度过程包含多个环节,目前最突出的问...
- 本节介绍aclnn算子的三种适配场景。 Paddle-API 与 CANN-Kernel 差异剖析及适配策略对于Paddle-API与CANN-Kernel两者中常见的差别与适配方法如下: Paddle参数缺失或者参数无法直接对应如果Paddle算子只需要CANN提供的某个参数为默认值的功能,则可通过默认赋值的方式完成考虑通过计算取得需要参数 CANN参数缺失CANN算子没有某个Paddle... 本节介绍aclnn算子的三种适配场景。 Paddle-API 与 CANN-Kernel 差异剖析及适配策略对于Paddle-API与CANN-Kernel两者中常见的差别与适配方法如下: Paddle参数缺失或者参数无法直接对应如果Paddle算子只需要CANN提供的某个参数为默认值的功能,则可通过默认赋值的方式完成考虑通过计算取得需要参数 CANN参数缺失CANN算子没有某个Paddle...
上滑加载中
推荐直播
-
仓颉编程语言开源创新人才培养经验分享
2025/08/06 周三 19:00-20:00
张引 -华为开发者布道师-高校教师
热情而富有活力的仓颉社区为学生的学习提供了一个充满机遇和挑战的平台。本次直播探讨如何运用社区的力量帮助同学们变身为开源开发者,从而完成从学生到工程师身份的转变。
回顾中 -
“全域洞察·智控未来” ——云资源监控实战
2025/08/08 周五 15:00-16:00
星璇 华为云监控产品经理,霄图 华为云监控体验设计师,云枢 华为云可观测产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
即将直播
热门标签