- 在此教程中,我们将对循环神经网络RNN模型及其原理进行一个简单的介绍,并实现RNN模型的训练和推理,目前支持MNIST、FashionMNIST和CIFAR-10等数据集,并给用户提供一个详细的帮助文档。同时,本项目还将实现循环神经网络的模型成员推理攻击,以及复杂场景下的成员推理攻击。 在此教程中,我们将对循环神经网络RNN模型及其原理进行一个简单的介绍,并实现RNN模型的训练和推理,目前支持MNIST、FashionMNIST和CIFAR-10等数据集,并给用户提供一个详细的帮助文档。同时,本项目还将实现循环神经网络的模型成员推理攻击,以及复杂场景下的成员推理攻击。
- 昇思MindSpore与书生·浦语大模型的强强联合,为开发者们提供全面而系统的大模型技术学习课程,建立了一个友好的交流平台,便于广大开发者在大模型实践开发中分享经验、交流思想,帮助开发者们高效掌握和广泛应用大模型技术。 昇思MindSpore与书生·浦语大模型的强强联合,为开发者们提供全面而系统的大模型技术学习课程,建立了一个友好的交流平台,便于广大开发者在大模型实践开发中分享经验、交流思想,帮助开发者们高效掌握和广泛应用大模型技术。
- RNN实现情感分类 概述情感分类是自然语言处理中的经典任务,是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果:输入: This film is terrible正确标签: Negative预测标签: Negative输入: This film is great正确标签: Positive预测标签: Positive 数据准备本节使用情感分类的... RNN实现情感分类 概述情感分类是自然语言处理中的经典任务,是典型的分类问题。本节使用MindSpore实现一个基于RNN网络的情感分类模型,实现如下的效果:输入: This film is terrible正确标签: Negative预测标签: Negative输入: This film is great正确标签: Positive预测标签: Positive 数据准备本节使用情感分类的...
- LSTM+CRF序列标注 概述序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名实体识别为例:输入序列清华大学座落于首都北京输出标注BIIIOOOOOBI如... LSTM+CRF序列标注 概述序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。以命名实体识别为例:输入序列清华大学座落于首都北京输出标注BIIIOOOOOBI如...
- MindNLP ChatGLM-6B StreamChat本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlppip install mindnlp 配置网络线路export HF_ENDPOINT=https://hf-mirror.com 代码开发下载权重大约需要10分钟from mindnlp.transformers import AutoModel... MindNLP ChatGLM-6B StreamChat本案例基于MindNLP和ChatGLM-6B实现一个聊天应用。 安装mindnlppip install mindnlp 配置网络线路export HF_ENDPOINT=https://hf-mirror.com 代码开发下载权重大约需要10分钟from mindnlp.transformers import AutoModel...
- 基于MindSpore通过GPT实现情感分类 代码实践 安装环境# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`!pip install mindnlp!pip install jieba%env HF_ENDPOINT=https://hf-mirror.com代码如下:... 基于MindSpore通过GPT实现情感分类 代码实践 安装环境# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`!pip install mindnlp!pip install jieba%env HF_ENDPOINT=https://hf-mirror.com代码如下:...
- 基于 MindSpore 实现 BERT 对话情绪识别 模型简介BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥... 基于 MindSpore 实现 BERT 对话情绪识别 模型简介BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥...
- 方法1,shell命令直接下载:!mkdir -p ./datasets/MNIST_Data/train ./datasets/MNIST_Data/test!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train... 方法1,shell命令直接下载:!mkdir -p ./datasets/MNIST_Data/train ./datasets/MNIST_Data/test!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train...
- Pix2Pix实现图像转换 Pix2Pix概述Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pi... Pix2Pix实现图像转换 Pix2Pix概述Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。Pix2Pi...
- GAN图像生成 模型简介生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文Generative Adversarial Nets中首次进行了描述,其主要由两个不同的模型共同组成——生成器(Generativ... GAN图像生成 模型简介生成式对抗网络(Generative Adversarial Networks,GAN)是一种生成式机器学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。最初,GAN由Ian J. Goodfellow于2014年发明,并在论文Generative Adversarial Nets中首次进行了描述,其主要由两个不同的模型共同组成——生成器(Generativ...
- DCGAN生成漫画头像在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的动漫头像数据集共有70,171张动漫头像图片,图片大小均为96*96。 GAN基础原理这部分原理介绍参考GAN图像生成。 DCGAN原理DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adve... DCGAN生成漫画头像在下面的教程中,我们将通过示例代码说明DCGAN网络如何设置网络、优化器、如何计算损失函数以及如何初始化模型权重。在本教程中,使用的动漫头像数据集共有70,171张动漫头像图片,图片大小均为96*96。 GAN基础原理这部分原理介绍参考GAN图像生成。 DCGAN原理DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adve...
- CycleGAN图像风格迁移互换 模型介绍 模型简介CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习将图像从源域... CycleGAN图像风格迁移互换 模型介绍 模型简介CycleGAN(Cycle Generative Adversarial Network) 即循环对抗生成网络,来自论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 。该模型实现了一种在没有配对示例的情况下学习将图像从源域...
- 基于MobileNetv2的垃圾分类 MobileNetv2模型原理介绍MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数... 基于MobileNetv2的垃圾分类 MobileNetv2模型原理介绍MobileNet网络是由Google团队于2017年提出的专注于移动端、嵌入式或IoT设备的轻量级CNN网络,相比于传统的卷积神经网络,MobileNet网络使用深度可分离卷积(Depthwise Separable Convolution)的思想在准确率小幅度降低的前提下,大大减小了模型参数与运算量。并引入宽度系数...
- 基于MindNLP+MusicGen生成自己的个性化音乐MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《Simple and Controllable Music Generation》。MusicGen模型基于Transformer结构,可以分解为三个不同的阶... 基于MindNLP+MusicGen生成自己的个性化音乐MusicGen是来自Meta AI的Jade Copet等人提出的基于单个语言模型(LM)的音乐生成模型,能够根据文本描述或音频提示生成高质量的音乐样本,相关研究成果参考论文《Simple and Controllable Music Generation》。MusicGen模型基于Transformer结构,可以分解为三个不同的阶...
- Vision Transformer图像分类感谢ZOMI酱对本文的贡献。 Vision Transformer(ViT)简介近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言... Vision Transformer图像分类感谢ZOMI酱对本文的贡献。 Vision Transformer(ViT)简介近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言...
上滑加载中
推荐直播
-
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day1)
2025/03/29 周六 09:00-18:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day2)
2025/03/30 周日 09:00-12:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
从AI基础到昇腾:大模型初探、DeepSeek解析与昇腾入门
2025/04/02 周三 16:00-17:30
不易 / 华为云学堂技术讲师
昇腾是华为研发的AI芯片,其具有哪些能力?我们如何基于其进行开发?本期直播将从AI以及大模型基础知识开始,介绍人工智能核心概念、昇腾AI基础软硬件平台以及昇腾专区,旨在为零基础或入门级学习者搭建从AI基础知识到昇腾技术的完整学习路径。
回顾中
热门标签