- 结果分布:左边是正样本,右边是负样本。 正负loss要均衡,负样本开始略站优势 左边是正样本,右边是负样本 正确姿势: 先调小学习率,再慢慢加大,因为负样本多,慢慢找正样本。 开始负样本可以在0.8-1之间,占比0.003以内,网络好的话后面就没有了。 先负样本收敛,再正样本收敛 学习率太大的表现: 正负样本两边... 结果分布:左边是正样本,右边是负样本。 正负loss要均衡,负样本开始略站优势 左边是正样本,右边是负样本 正确姿势: 先调小学习率,再慢慢加大,因为负样本多,慢慢找正样本。 开始负样本可以在0.8-1之间,占比0.003以内,网络好的话后面就没有了。 先负样本收敛,再正样本收敛 学习率太大的表现: 正负样本两边...
- 听说效果不错,有预训练, https://github.com/yinboc/liif https://github.com/junpan19/RRN 有预训练 https://github.com/XuecaiHu/Meta-SR-Pytorch 听说效果不错,有预训练, https://github.com/yinboc/liif https://github.com/junpan19/RRN 有预训练 https://github.com/XuecaiHu/Meta-SR-Pytorch
- Ctrl+C之后呈现的信息表明,这个bug是和多线程有关系。 经过笔者实验,目前有三种可靠的解决方式 1).Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的I... Ctrl+C之后呈现的信息表明,这个bug是和多线程有关系。 经过笔者实验,目前有三种可靠的解决方式 1).Dataloader里面不用cv2.imread进行读取图片,用cv2.imread还会带来一系列的不方便,比如不能结合torchvision进行数据增强,所以最好用PIL 里面的I...
- 数据官网:http://shuoyang1213.me/WIDERFACE/ 官方训练集和验证集都有标注,测试集没有 验证集: WIDER_val.zip 标注:wider_face_val_bbx_gt.txt 标注文件:wider_face_split.zip 官网有。 retinaface网址: https://github.com/biu... 数据官网:http://shuoyang1213.me/WIDERFACE/ 官方训练集和验证集都有标注,测试集没有 验证集: WIDER_val.zip 标注:wider_face_val_bbx_gt.txt 标注文件:wider_face_split.zip 官网有。 retinaface网址: https://github.com/biu...
- https://github.com/Michael-Jing/EfficientDet-pytorch/blob/master/efficientdet_pytorch/BiFPN.py 这里面的参数不可导, 训练集有map,但是测试集map全是0, 经过验证,不是bifpn的问题。 bifpn 动态参数和静态参数 改成可求导的参数后,准确率反而下... https://github.com/Michael-Jing/EfficientDet-pytorch/blob/master/efficientdet_pytorch/BiFPN.py 这里面的参数不可导, 训练集有map,但是测试集map全是0, 经过验证,不是bifpn的问题。 bifpn 动态参数和静态参数 改成可求导的参数后,准确率反而下...
- 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 注意:73上map连续几天一直低,因为负样本loss由0.01改为了0.02 还要分析是分类的loss大,还是回归的los... 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 注意:73上map连续几天一直低,因为负样本loss由0.01改为了0.02 还要分析是分类的loss大,还是回归的los...
- nn.Module中定义参数:不需要加cuda,可以求导,反向传播 class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print("no--... nn.Module中定义参数:不需要加cuda,可以求导,反向传播 class BiFPN(nn.Module): def __init__(self, fpn_sizes): self.w1 = nn.Parameter(torch.rand(1)) print("no--...
- Hinge Loss 作者:陈雕 链接:https://www.zhihu.com/question/47746939/answer/286432586 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 我说一个前面没提到的,李航老师在他的《统计学习基础》中有提到, hinge 的中文意思是 “... Hinge Loss 作者:陈雕 链接:https://www.zhihu.com/question/47746939/answer/286432586 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 我说一个前面没提到的,李航老师在他的《统计学习基础》中有提到, hinge 的中文意思是 “...
- 最简单的: state_dict = torch.load(weight_path) self.load_state_dict(state_dict,strict=False) 加载cpu: model = IResNet(IBasicBlock, [2, 2, 2, 2]) a_path=r"ms1mv3_ar... 最简单的: state_dict = torch.load(weight_path) self.load_state_dict(state_dict,strict=False) 加载cpu: model = IResNet(IBasicBlock, [2, 2, 2, 2]) a_path=r"ms1mv3_ar...
- 感觉深度学习在移动端的全面开花就在这两年了,其实感觉已经开始开花了。 先说说量化是怎么一回事,目前我们在caffe, tensorflow等框架上训练模型(前向和反向)都是使用float 32的,与int 8相比,所需储存空间更大,但是精度更好。 量化目前来讲,有两种方式,一种是通过训练量化finetune原来的模型,另一种是直接对模型和计算进行量化。这篇... 感觉深度学习在移动端的全面开花就在这两年了,其实感觉已经开始开花了。 先说说量化是怎么一回事,目前我们在caffe, tensorflow等框架上训练模型(前向和反向)都是使用float 32的,与int 8相比,所需储存空间更大,但是精度更好。 量化目前来讲,有两种方式,一种是通过训练量化finetune原来的模型,另一种是直接对模型和计算进行量化。这篇...
- 基于相关滤波器的追踪(Correlation Filter-based Tracking)原理 基于相关滤波器的追踪算法,典型的算法有KCF,DSST,STC,SAMF等。这些算法的大致框架都是差不多的。 介绍 在视频的第一帧给定目标的初始位置,追踪的目标就是预测目标之后的位置。追踪受到很多因素影响,比如光照变化(illumination variations),... 基于相关滤波器的追踪(Correlation Filter-based Tracking)原理 基于相关滤波器的追踪算法,典型的算法有KCF,DSST,STC,SAMF等。这些算法的大致框架都是差不多的。 介绍 在视频的第一帧给定目标的初始位置,追踪的目标就是预测目标之后的位置。追踪受到很多因素影响,比如光照变化(illumination variations),...
- Surf算法学习心得(一)——算法原理 写在前面的话: Surf算法是对Sift算法的一种改进,主要是在算法的执行效率上,比Sift算法来讲运行更快!由于我也是初学者,刚刚才开始研究这个算法,然而网上对于Surf算法的资料又尤为极少,稍微介绍的明白一点的还是英文。所以在此想借这个机会把我所理解的部分介绍一下,对于后面准备学习Surf算法的朋友来说,希望有一点点... Surf算法学习心得(一)——算法原理 写在前面的话: Surf算法是对Sift算法的一种改进,主要是在算法的执行效率上,比Sift算法来讲运行更快!由于我也是初学者,刚刚才开始研究这个算法,然而网上对于Surf算法的资料又尤为极少,稍微介绍的明白一点的还是英文。所以在此想借这个机会把我所理解的部分介绍一下,对于后面准备学习Surf算法的朋友来说,希望有一点点...
- 反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是: (1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值... 反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法。其主要思想是: (1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程; (2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值...
- 多目标优化 目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-objective Optimization Problem, SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem, M... 多目标优化 目标优化问题一般地就是指通过一定的优化算法获得目标函数的最优化解。当优化的目标函数为一个时称之为单目标优化(Single-objective Optimization Problem, SOP)。当优化的目标函数有两个或两个以上时称为多目标优化(Multi-objective Optimization Problem, M...
- 原文:http://blog.163.com/renguangqian@126/blog/static/1624014002011711114526759/ FUCk,相见很晚,如果大学期间遇到这样的文章,线代必须90分以上!!!! 特征值和特征向量的几何和物理意义 摘自《线性代数的几何意义》 我们知道,矩阵乘法对应了一个变换,是把任意... 原文:http://blog.163.com/renguangqian@126/blog/static/1624014002011711114526759/ FUCk,相见很晚,如果大学期间遇到这样的文章,线代必须90分以上!!!! 特征值和特征向量的几何和物理意义 摘自《线性代数的几何意义》 我们知道,矩阵乘法对应了一个变换,是把任意...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签