- @[toc]在上一篇文章中完成了前期的准备工作,见链接:MobileViG实战:使用MobileViG实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch... @[toc]在上一篇文章中完成了前期的准备工作,见链接:MobileViG实战:使用MobileViG实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:FasterViT实战:使用FasterViT实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch... @[toc]在上一篇文章中完成了前期的准备工作,见链接:FasterViT实战:使用FasterViT实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:InceptionNext实战:使用InceptionNext实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimpo... @[toc]在上一篇文章中完成了前期的准备工作,见链接:InceptionNext实战:使用InceptionNext实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimpo...
- 讲解No Module Named '_pywrap_tensorflow_internal'在使用TensorFlow进行深度学习任务时,你可能会在代码中遇到这样的错误消息:"No module named '_pywrap_tensorflow_internal'"。这个错误提示表明你遗漏了TensorFlow内部的一个重要模块,导致无法加载所需的功能和库。错误原因这个错误通常是由于Te... 讲解No Module Named '_pywrap_tensorflow_internal'在使用TensorFlow进行深度学习任务时,你可能会在代码中遇到这样的错误消息:"No module named '_pywrap_tensorflow_internal'"。这个错误提示表明你遗漏了TensorFlow内部的一个重要模块,导致无法加载所需的功能和库。错误原因这个错误通常是由于Te...
- pytorch view()函数错误解决在使用pytorch进行深度学习任务时,经常会用到view()函数来改变张量的形状(shape)。然而,在使用view()函数时,有时候可能会遇到以下错误信息:plaintextCopy codeTypeError: view(): argument 'size' (position 1) must be tuple of ints, ... pytorch view()函数错误解决在使用pytorch进行深度学习任务时,经常会用到view()函数来改变张量的形状(shape)。然而,在使用view()函数时,有时候可能会遇到以下错误信息:plaintextCopy codeTypeError: view(): argument 'size' (position 1) must be tuple of ints, ...
- 解决 "a leaf Variable that requires grad has been used in an in-place operation"在使用PyTorch进行深度学习模型训练时,有时会遇到一个错误信息:"a leaf Variable that requires grad has been used in an in-place operation"。这个错误通常出现在... 解决 "a leaf Variable that requires grad has been used in an in-place operation"在使用PyTorch进行深度学习模型训练时,有时会遇到一个错误信息:"a leaf Variable that requires grad has been used in an in-place operation"。这个错误通常出现在...
- 解决Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2当你在运行TensorFlow代码时,可能会遇到以下错误信息:plaintextCopy codeYour CPU supports instructions that this TensorFlow bi... 解决Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2当你在运行TensorFlow代码时,可能会遇到以下错误信息:plaintextCopy codeYour CPU supports instructions that this TensorFlow bi...
- Tensorflow入门介绍Tensorflow是由Google开发的开源深度学习框架,可以实现各种机器学习和深度学习任务。它提供了丰富的工具和库,使得开发者可以方便地构建、训练和部署机器学习模型。本文将介绍Tensorflow的基本概念和使用方法,帮助读者入门。安装在开始使用Tensorflow之前,我们需要先安装它。下面是通过pip命令安装Tensorflow的方法:plaintextC... Tensorflow入门介绍Tensorflow是由Google开发的开源深度学习框架,可以实现各种机器学习和深度学习任务。它提供了丰富的工具和库,使得开发者可以方便地构建、训练和部署机器学习模型。本文将介绍Tensorflow的基本概念和使用方法,帮助读者入门。安装在开始使用Tensorflow之前,我们需要先安装它。下面是通过pip命令安装Tensorflow的方法:plaintextC...
- 解决read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version的问题最近在使用TensorFlow开发深度学习模型时,遇到了一个警告信息:read_data_sets (from tensor... 解决read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version的问题最近在使用TensorFlow开发深度学习模型时,遇到了一个警告信息:read_data_sets (from tensor...
- 解决AttributeError: module 'tensorflow' has no attribute 'placeholder'如果你在使用TensorFlow时遇到了"AttributeError: module 'tensorflow' has no attribute 'placeholder'"的错误,这意味着你正在使用的TensorFlow版本与你的代码不兼容。这个错误通常... 解决AttributeError: module 'tensorflow' has no attribute 'placeholder'如果你在使用TensorFlow时遇到了"AttributeError: module 'tensorflow' has no attribute 'placeholder'"的错误,这意味着你正在使用的TensorFlow版本与你的代码不兼容。这个错误通常...
- 在深度学习领域,自编码器(Autoencoders)是一种常用的无监督学习算法,用于学习数据的低维表示。而稀疏自编码器(Sparse Autoencoders)作为自编码器的一种变种,在一定程度上能够更好地学习到数据的稀疏特征表示。本文将介绍稀疏自编码器的基本原理、训练方法以及应用领域。1. 稀疏自编码器的基本原理稀疏自编码器是一种基于神经网络的自编码器模型,其目标是通过学习到的稀疏表示来重... 在深度学习领域,自编码器(Autoencoders)是一种常用的无监督学习算法,用于学习数据的低维表示。而稀疏自编码器(Sparse Autoencoders)作为自编码器的一种变种,在一定程度上能够更好地学习到数据的稀疏特征表示。本文将介绍稀疏自编码器的基本原理、训练方法以及应用领域。1. 稀疏自编码器的基本原理稀疏自编码器是一种基于神经网络的自编码器模型,其目标是通过学习到的稀疏表示来重...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:BiFormer实战:使用BiFormer实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torchim... @[toc]在上一篇文章中完成了前期的准备工作,见链接:BiFormer实战:使用BiFormer实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torchim...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:SeaFormer实战:使用SeaFormer实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch... @[toc]在上一篇文章中完成了前期的准备工作,见链接:SeaFormer实战:使用SeaFormer实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:InternImage实战:使用InternImage实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport t... @[toc]在上一篇文章中完成了前期的准备工作,见链接:InternImage实战:使用InternImage实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport t...
- @[toc]在上一篇文章中完成了前期的准备工作,见链接:FasterNet实战:使用FasterNet实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch... @[toc]在上一篇文章中完成了前期的准备工作,见链接:FasterNet实战:使用FasterNet实现图像分类任务(一)这篇主要是讲解如何训练和测试 训练部分完成上面的步骤后,就开始train脚本的编写,新建train.py 导入项目使用的库在train.py导入import jsonimport osimport matplotlib.pyplot as pltimport torch...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
即将直播
热门标签