- 参考:http://www.cnblogs.com/pegasus/archive/2011/05/19/2051416.html 这里讨论利用输入图像中像素的小邻域来产生输出图像的方法,在信号处理中这种方法称为滤波(filtering)。其中,最常用的是线性滤波:输出像素是输入邻域像素的加权和。 1.相关算子(Correlation Operator)... 参考:http://www.cnblogs.com/pegasus/archive/2011/05/19/2051416.html 这里讨论利用输入图像中像素的小邻域来产生输出图像的方法,在信号处理中这种方法称为滤波(filtering)。其中,最常用的是线性滤波:输出像素是输入邻域像素的加权和。 1.相关算子(Correlation Operator)...
- X(t)为随机过程,a(t)=E(X(t))为期望,Y(t)为另一随机过程 自相关函数的定义为: R(s,t)=E(X(s)*X(t)) 互相关函数的定义为: R(s,t)=E(X(s)*Y(t)) 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别... X(t)为随机过程,a(t)=E(X(t))为期望,Y(t)为另一随机过程 自相关函数的定义为: R(s,t)=E(X(s)*X(t)) 互相关函数的定义为: R(s,t)=E(X(s)*Y(t)) 事实上,在图象处理中,自相关和互相关函数的定义如下:设原函数是f(t),则自相关函数定义为R(u)=f(t)*f(-t),其中*表示卷积;设两个函数分别...
- 'steps': [8, 16, 32],决定特征图大小 feature_maps images/steps # 'min_sizes': [[28, 35], [48, 70], [110, 170]], anchors尺寸 # 'steps': [8, 16, 32],决定特征图大小 images/steps  ... 'steps': [8, 16, 32],决定特征图大小 feature_maps images/steps # 'min_sizes': [[28, 35], [48, 70], [110, 170]], anchors尺寸 # 'steps': [8, 16, 32],决定特征图大小 images/steps  ...
- from collections import OrderedDict import timeimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.nn import init def _make_divisible(v, divisor, min_value=N... from collections import OrderedDict import timeimport torchimport torch.nn as nnimport torch.nn.functional as Ffrom torch.nn import init def _make_divisible(v, divisor, min_value=N...
- Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++。在自动模式下运行时间为29.3ms,在交互模式下运行时间为2.6ms,比Polygon-RNN ++分别快10倍和100倍。 https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=... Curve-GCN是一种高效交互式图像标注方法,其性能优于Polygon-RNN++。在自动模式下运行时间为29.3ms,在交互模式下运行时间为2.6ms,比Polygon-RNN ++分别快10倍和100倍。 https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=...
- 原文: http://blog.sina.com.cn/s/blog_6df50e1a01019z95.html 1.使用模板处理图像相关概念 模板:矩阵方块,其数学含义是一种卷积运算。 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个... 原文: http://blog.sina.com.cn/s/blog_6df50e1a01019z95.html 1.使用模板处理图像相关概念 模板:矩阵方块,其数学含义是一种卷积运算。 卷积运算:可看作是加权求和的过程,使用到的图像区域中的每个...
- 3*3卷积核不降尺寸做法: self.conv_1x1_last = conv_bn_relu(nin=96, nout=96, kernel_size=3, stride=1, padding=1, bias=False) 降尺寸做法: conv_bn_relu(nin=80, nout=96, kernel_size=3, stride=2, pad... 3*3卷积核不降尺寸做法: self.conv_1x1_last = conv_bn_relu(nin=96, nout=96, kernel_size=3, stride=1, padding=1, bias=False) 降尺寸做法: conv_bn_relu(nin=80, nout=96, kernel_size=3, stride=2, pad...
- VariFocalNet | IoU-aware同V-Focal Loss全面提升密集目标检测(附YOLOV5测试代码) 观察到,核心网络是resnet50,resnet101 如果推理报错,参考: https://github.com/hyz-xmaster/VarifocalNet/issues/1 准确地对大量候选检测器进行排名是高性能密集目标检测器的关键。尽管... VariFocalNet | IoU-aware同V-Focal Loss全面提升密集目标检测(附YOLOV5测试代码) 观察到,核心网络是resnet50,resnet101 如果推理报错,参考: https://github.com/hyz-xmaster/VarifocalNet/issues/1 准确地对大量候选检测器进行排名是高性能密集目标检测器的关键。尽管...
- 论文笔记:https://zhuanlan.zhihu.com/p/33158548 论文链接:https://arxiv.org/abs/1711.07264 这篇文章从题目上看就一目了然:捍卫two-stage object detector. 我们知道Object detection分为两大门派: 一类是two-stagede... 论文笔记:https://zhuanlan.zhihu.com/p/33158548 论文链接:https://arxiv.org/abs/1711.07264 这篇文章从题目上看就一目了然:捍卫two-stage object detector. 我们知道Object detection分为两大门派: 一类是two-stagede...
- 本文是对我们CVPR 2021被接收的文章 Involution: Inverting the Inherence of Convolution for Visual Recognition的解读,同时也分享一些我们对网络结构设计(CNN和Transformer)的理解。 这篇工作主要是我和SENet的作者胡杰一起完成的,也非常感谢HKUST的两位导师@陈启... 本文是对我们CVPR 2021被接收的文章 Involution: Inverting the Inherence of Convolution for Visual Recognition的解读,同时也分享一些我们对网络结构设计(CNN和Transformer)的理解。 这篇工作主要是我和SENet的作者胡杰一起完成的,也非常感谢HKUST的两位导师@陈启...
- 超越卷积、自注意力机制:强大的神经网络新算子involution Image Classification on ImageNet Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%) Config Download RedNet-26 9.23(32.8%↓) 1.73(29.2%↓) ... 超越卷积、自注意力机制:强大的神经网络新算子involution Image Classification on ImageNet Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%) Config Download RedNet-26 9.23(32.8%↓) 1.73(29.2%↓) ...
- 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构 论文链接:https://arxiv.org/pdf/2105.01601.pdf... 11年it研发经验,从一个会计转行为算法工程师,学过C#,c++,java,android,php,go,js,python,CNN神经网络,四千多篇博文,三千多篇原创,只为与你分享,共同成长,一起进步,关注我,给你分享更多干货知识! 谷歌最新提出无需卷积、注意力 ,纯MLP构成的视觉架构 论文链接:https://arxiv.org/pdf/2105.01601.pdf...
- 这个有与训练,3年前: https://github.com/meteorshowers/hed-pytorch 5年前:有模型 https://github.com/s9xie/hed 这个有与训练,3年前: https://github.com/meteorshowers/hed-pytorch 5年前:有模型 https://github.com/s9xie/hed
- 原文:http://www.cnblogs.com/ybjourney/p/4702562.html 机器学习(一)——K-近邻(KNN)算法 最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 一 . K... 原文:http://www.cnblogs.com/ybjourney/p/4702562.html 机器学习(一)——K-近邻(KNN)算法 最近在看《机器学习实战》这本书,因为自己本身很想深入的了解机器学习算法,加之想学python,就在朋友的推荐之下选择了这本书进行学习。 一 . K...
- Keras中提供了一个神经网络可视化的函数plot,并可以将可视化结果保存在本地。plot使用方法如下: from keras.utils.visualize_util import plotplot(model, to_file='model.png') 注:笔者使用的Keras版本是1.0.6 不过这项功能依赖于graphviz模块与pydot模块,... Keras中提供了一个神经网络可视化的函数plot,并可以将可视化结果保存在本地。plot使用方法如下: from keras.utils.visualize_util import plotplot(model, to_file='model.png') 注:笔者使用的Keras版本是1.0.6 不过这项功能依赖于graphviz模块与pydot模块,...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签