- 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这些数据的每一个都会被乘个数,即权值... 什么是神经网络? 神经网络是由很多神经元组成的,首先我们看一下,什么是神经元 上面这个图表示的就是一个神经元,我们不管其它书上说的那些什么树突,轴突的。我用个比较粗浅的解释,可能不太全面科学,但对初学者很容易理解: 1、我们把输入信号看成你在matlab中需要输入的数据,输进去神经网络后 2、这些数据的每一个都会被乘个数,即权值...
- 1.背景 今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。 什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量... 1.背景 今后博主会每周定时更新机器学习算法及其python的简单实现。今天学习的算法是KNN近邻算法。KNN算法是一个监督学习分类器类别的算法。 什么是监督学习,什么又是无监督学习呢。监督学习就是我们知道目标向量...
- 由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受... 由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强的方法。对于某些类型的问题,如学习解释复杂的现实世界中的传感器数据,人工神经网络是目前知道的最有效学习方法。人工神经网络的研究在一定程度上受...
- 前言 神经网络里面主要就是单层神经网络学习和多层神经网络学习,涉及到知识点主要就是感知器,线性分割,影藏层,权重校正,误差的平方和等知识点。 感知器:是神经网络最简单的形式,单层双输入感知器的结构如下: 感知器的作用是将输入分类,超平面有线性分割函数定义: 下图是感知器的线性分割:两输入感知器和三输入感知器的情形。 ... 前言 神经网络里面主要就是单层神经网络学习和多层神经网络学习,涉及到知识点主要就是感知器,线性分割,影藏层,权重校正,误差的平方和等知识点。 感知器:是神经网络最简单的形式,单层双输入感知器的结构如下: 感知器的作用是将输入分类,超平面有线性分割函数定义: 下图是感知器的线性分割:两输入感知器和三输入感知器的情形。 ...
- 一.引入 K近邻算法作为数据挖掘十大经典算法之一,其算法思想可谓是intuitive,就是从训练集里找离预测点最近的K个样本来预测分类 因为算法思想简单,你可以用很多方法实现它,这时效率就是我们需要慎重考虑的事情,最简单的自然是求出测试样本和训练集所有点的距离然后排... 一.引入 K近邻算法作为数据挖掘十大经典算法之一,其算法思想可谓是intuitive,就是从训练集里找离预测点最近的K个样本来预测分类 因为算法思想简单,你可以用很多方法实现它,这时效率就是我们需要慎重考虑的事情,最简单的自然是求出测试样本和训练集所有点的距离然后排...
- 多层网络和反向传播算法 我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感知器,这个问题有两个方面: 1、 要学习网络结构; 2、 要学习连接权值 对于一个给定的网络有一个相当简... 多层网络和反向传播算法 我们知道单个感知器仅能表示线性决策面。然而我们可以将许多的类似感知器的模型按照层次结构连接起来,这样就能表现出非线性决策的边界了,这也叫做多层感知器,重要的是怎么样学习多层感知器,这个问题有两个方面: 1、 要学习网络结构; 2、 要学习连接权值 对于一个给定的网络有一个相当简...
- K-近邻算法的思想如下:首先,计算新样本与训练样本之间的距离,找到距离最近的K 个邻居;然后,根据这些邻居所属的类别来判定新样本的类别,如果它们都属于同一个类别,那么新样本也属于这个类;否则,对每个后选类别进行评分,按照某种规则确定新样本的类别。(统计出现的频率) 该算法比较适用于样本容量比较大的类域的自动分... K-近邻算法的思想如下:首先,计算新样本与训练样本之间的距离,找到距离最近的K 个邻居;然后,根据这些邻居所属的类别来判定新样本的类别,如果它们都属于同一个类别,那么新样本也属于这个类;否则,对每个后选类别进行评分,按照某种规则确定新样本的类别。(统计出现的频率) 该算法比较适用于样本容量比较大的类域的自动分...
- 在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域。 1... 在前面我们讲到了DNN,以及DNN的特例CNN的模型和前向反向传播算法,这些算法都是前向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理中的语音识别,手写书别以及机器翻译等领域。 1...
- 在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结。 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这... 在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结。 1. DNN反向传播算法要解决的问题 在了解DNN的反向传播算法前,我们先要知道DNN反向传播算法要解决的问题,也就是说,什么时候我们需要这...
- LSTM是一种时间递归神经网络,它出现的原因是为了解决RNN的一个致命的缺陷。原生的RNN会遇到一个很大的问题,叫做The vanishing gradient problem for RNNs,也就是后面时间的节点会出现老年痴呆症,也就是忘事儿,这使得RNN在很长一段时间内都没有受到关注,网络只要一深就没法训练。后来有些大牛们开始使用... LSTM是一种时间递归神经网络,它出现的原因是为了解决RNN的一个致命的缺陷。原生的RNN会遇到一个很大的问题,叫做The vanishing gradient problem for RNNs,也就是后面时间的节点会出现老年痴呆症,也就是忘事儿,这使得RNN在很长一段时间内都没有受到关注,网络只要一深就没法训练。后来有些大牛们开始使用...
- 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。 1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输... 深度神经网络(Deep Neural Networks, 以下简称DNN)是深度学习的基础,而要理解DNN,首先我们要理解DNN模型,下面我们就对DNN的模型与前向传播算法做一个总结。 1. 从感知机到神经网络 在感知机原理小结中,我们介绍过感知机的模型,它是一个有若干输入和一个输出的模型,如下图: 输出和输...
- MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和的方法,但是这个方法需要得到对应的概率分布的样本集... MCMC(一)蒙特卡罗方法 MCMC(二)马尔科夫链 MCMC(三)MCMC采样和M-H采样 MCMC(四)Gibbs采样 在MCMC(一)蒙特卡罗方法中,我们讲到了如何用蒙特卡罗方法来随机模拟求解一些复杂的连续积分或者离散求和的方法,但是这个方法需要得到对应的概率分布的样本集...
- 在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN。第二类是有反馈的神经网络,即RNN和LSTM。今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机。主要关注于这类模型中的受限玻尔兹曼机(Restricted Boltzmann Machine,以下简称RBM), RBM模型及其推广在工... 在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN。第二类是有反馈的神经网络,即RNN和LSTM。今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机。主要关注于这类模型中的受限玻尔兹曼机(Restricted Boltzmann Machine,以下简称RBM), RBM模型及其推广在工...
- 分类算法有很多,贝叶斯、决策树、支持向量积、KNN等,神经网络也可以用于分类。这篇文章主要介绍一下KNN分类算法。 1、介绍 KNN是k nearest neighbor 的简称,即K最邻近,就是找K个最近的实例投票决定新实例的类标。KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例... 分类算法有很多,贝叶斯、决策树、支持向量积、KNN等,神经网络也可以用于分类。这篇文章主要介绍一下KNN分类算法。 1、介绍 KNN是k nearest neighbor 的简称,即K最邻近,就是找K个最近的实例投票决定新实例的类标。KNN是一种基于实例的学习算法,它不同于贝叶斯、决策树等算法,KNN不需要训练,当有新的实例...
- IBM SPSS Modeler以图形化的界面、简单的拖拽方式来快速构建数据挖掘分析模型著称,它提供了完整的统计挖掘功能,包括来自于统计学、机器学习、人工智能等方面的分析算法和数据模型,包括如关联、分类、预测等完整的全面挖掘分析功能,下面让我们一起来了解这些算法: 首先,针对刚入门数据挖掘领域的初学者来说,即使你不懂数据挖掘算法,... IBM SPSS Modeler以图形化的界面、简单的拖拽方式来快速构建数据挖掘分析模型著称,它提供了完整的统计挖掘功能,包括来自于统计学、机器学习、人工智能等方面的分析算法和数据模型,包括如关联、分类、预测等完整的全面挖掘分析功能,下面让我们一起来了解这些算法: 首先,针对刚入门数据挖掘领域的初学者来说,即使你不懂数据挖掘算法,...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签