- 在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结。在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP) 1. 回顾DNN的反向传播算法 我们首先回顾DNN的反向传播算法。在DNN中,我们是... 在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结。在阅读本文前,建议先研究DNN的反向传播算法:深度神经网络(DNN)反向传播算法(BP) 1. 回顾DNN的反向传播算法 我们首先回顾DNN的反向传播算法。在DNN中,我们是...
- 在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用So... 在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的。重点会和传统的DNN比较讨论。 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用So...
- 卷积的意义,原文:http://blog.csdn.net/yeeman/article/details/6325693 卷积 最近总是和卷积打交道,工作需要,每天都要碰到它好几次,不胜烦恼,因为在大学时候学信号与系统的时候就没学会,我于是心想一定要把卷积完全搞明白。正好同办公室的同学也问我什么是卷积,师姐昨天也告诉我说:"我... 卷积的意义,原文:http://blog.csdn.net/yeeman/article/details/6325693 卷积 最近总是和卷积打交道,工作需要,每天都要碰到它好几次,不胜烦恼,因为在大学时候学信号与系统的时候就没学会,我于是心想一定要把卷积完全搞明白。正好同办公室的同学也问我什么是卷积,师姐昨天也告诉我说:"我...
- 和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结。 1. DNN的L1&L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正则化。L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化。 而DNN的L2正则化通常的做法是只针对与... 和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结。 1. DNN的L1&L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正则化。L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化。 而DNN的L2正则化通常的做法是只针对与...
- 原文链接 http://www.goldsborough.me/cuda/ml/cudnn/c++/2017/10/01/14-37-23-convolutions_with_cudnn/ 以下为长截图,CSDN 限定了图片长度,请点击查看原图 #include <cudnn.h> // ht... 原文链接 http://www.goldsborough.me/cuda/ml/cudnn/c++/2017/10/01/14-37-23-convolutions_with_cudnn/ 以下为长截图,CSDN 限定了图片长度,请点击查看原图 #include <cudnn.h> // ht...
- 过去二十年,由于互联网的发展,零售由线下往线上迁移。近些年,伴随着智能手机的普及,越来越多的线上零售在移动终端上完成。 随着这些移动设备计算力和存储力的日益强大,智能手机也正在成为强大的计算平台,为复杂的端上情景计算提供了可能。 情景计算是利用大数据和机器学习算法在移动设备上主动感知用户状态及用户所处的环境,预测用户意图,对新零... 过去二十年,由于互联网的发展,零售由线下往线上迁移。近些年,伴随着智能手机的普及,越来越多的线上零售在移动终端上完成。 随着这些移动设备计算力和存储力的日益强大,智能手机也正在成为强大的计算平台,为复杂的端上情景计算提供了可能。 情景计算是利用大数据和机器学习算法在移动设备上主动感知用户状态及用户所处的环境,预测用户意图,对新零...
- 💖作者简介:大家好,我是车神哥,府学路18号的车神🥇 ⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(那半分钟其实是等红绿灯) 📝个人主页:应无所住而生其心的博客_府学路18... 💖作者简介:大家好,我是车神哥,府学路18号的车神🥇 ⚡About—>车神:从寝室到实验室最快3分钟,最慢3分半(那半分钟其实是等红绿灯) 📝个人主页:应无所住而生其心的博客_府学路18...
- 简 介: 本文给出了 2021年人工神经网络第一次作业要求 中,由同学提交的作业示例。 关键词: 人工神经网络,感知机,BP,数据压缩 ... 简 介: 本文给出了 2021年人工神经网络第一次作业要求 中,由同学提交的作业示例。 关键词: 人工神经网络,感知机,BP,数据压缩 ...
- 在周三信号与系统课程下课之后,陆凯同学(20160101438)就一道作业中的练习题提问。 原本的作业是针对一个线性时不变(LTI)的系统,输入信号为e(t),系统输出为r(t)。如下图所示: ... 在周三信号与系统课程下课之后,陆凯同学(20160101438)就一道作业中的练习题提问。 原本的作业是针对一个线性时不变(LTI)的系统,输入信号为e(t),系统输出为r(t)。如下图所示: ...
- 卓晴老师,我一直没想明白一个问题,为什么卷积要先反转再滑动呢?不翻转为什么不行? ▲ 孔乙己:回字有四种写法|插图来自网络 的确,对于两个信号之间的卷积运算,可以理解为对其中任意个... 卓晴老师,我一直没想明白一个问题,为什么卷积要先反转再滑动呢?不翻转为什么不行? ▲ 孔乙己:回字有四种写法|插图来自网络 的确,对于两个信号之间的卷积运算,可以理解为对其中任意个...
- 全国大学生智能汽车竞赛,顶着“智能”的帽子已经走过了14年了。如果按照2005年,当年筹办比赛时候的标准,车模在预先不知道的赛道上完成竞速比赛,看起来还仿佛应该具有“智能”。 可是做过智能比赛的人都... 全国大学生智能汽车竞赛,顶着“智能”的帽子已经走过了14年了。如果按照2005年,当年筹办比赛时候的标准,车模在预先不知道的赛道上完成竞速比赛,看起来还仿佛应该具有“智能”。 可是做过智能比赛的人都...
- 本文是 2020人工神经网络第一次作业 的参考答案第六部分 ➤06 第六题参考答案 1.题目分析 按照题意,构造如下的神经网络。 隐层的传递函数使用sigmoid函数,输出层的... 本文是 2020人工神经网络第一次作业 的参考答案第六部分 ➤06 第六题参考答案 1.题目分析 按照题意,构造如下的神经网络。 隐层的传递函数使用sigmoid函数,输出层的...
- 在上周的人工神经网络课程中介绍了机器学习中的支持向量机(SVM:Support Vector Machine)与前馈网络RBF的之间的联系,而对于有传递函数为线性函数组成的单层网络的代表自适应线性单元(... 在上周的人工神经网络课程中介绍了机器学习中的支持向量机(SVM:Support Vector Machine)与前馈网络RBF的之间的联系,而对于有传递函数为线性函数组成的单层网络的代表自适应线性单元(...
- 01竞赛背景 近年来,随着人工智能特别是深度学习的发展,如何通过自学习 实现避障已成为一大研究热点。实现自主学习是机器人实现智能化的重要一步,有利于改善其行为策略,提高在未知复杂... 01竞赛背景 近年来,随着人工智能特别是深度学习的发展,如何通过自学习 实现避障已成为一大研究热点。实现自主学习是机器人实现智能化的重要一步,有利于改善其行为策略,提高在未知复杂...
- 本文是 2020人工神经网络第一次作业 的参考答案第五部分 ➤05 第五题参考答案 1.题目分析 MATLAB中的Peaks函数是一个二元函数,构造BP网络来逼近该函数,网络的输... 本文是 2020人工神经网络第一次作业 的参考答案第五部分 ➤05 第五题参考答案 1.题目分析 MATLAB中的Peaks函数是一个二元函数,构造BP网络来逼近该函数,网络的输...
上滑加载中
推荐直播
-
香橙派AIpro的远程推理框架与实验案例
2025/07/04 周五 19:00-20:00
郝家胜 -华为开发者布道师-高校教师
AiR推理框架创新采用将模型推理与模型应用相分离的机制,把香橙派封装为AI推理黑盒服务,构建了分布式远程推理框架,并提供多种输入模态、多种输出方式以及多线程支持的高度复用框架,解决了开发板环境配置复杂上手困难、缺乏可视化体验和资源稀缺课程受限等痛点问题,真正做到开箱即用,并支持多种笔记本电脑环境、多种不同编程语言,10行代码即可体验图像分割迁移案例。
回顾中 -
鸿蒙端云一体化应用开发
2025/07/10 周四 19:00-20:00
倪红军 华为开发者布道师-高校教师
基于鸿蒙平台终端设备的应用场景越来越多、使用范围越来越广。本课程以云数据库服务为例,介绍云侧项目应用的创建、新建对象类型、新增存储区及向对象类型中添加数据对象的方法,端侧(HarmonyOS平台)一体化工程项目的创建、云数据资源的关联方法及对云侧数据的增删改查等操作方法,为开发端云一体化应用打下坚实基础。
回顾中
热门标签