- GoogLeNetInceptionCNN深度学习卷积神经网络 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。VGG继承了LeNet以及AlexNet的一些框架结构(详见 大话CNN经典模型:VGGN... GoogLeNetInceptionCNN深度学习卷积神经网络 2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。VGG继承了LeNet以及AlexNet的一些框架结构(详见 大话CNN经典模型:VGGN...
- Region Proposal Network RPN的实现方式:在conv5-3的卷积feature map上用一个n*n的滑窗(论文中作者选用了n=3,即3*3的滑窗)生成一个长度为256(对应于ZF网络)或512(对应于VGG网络)维长度的全连接特征.然后在这个256维或512维的特征后产生两个分支的全连接层: (1)reg-layer,用于预测proposal的... Region Proposal Network RPN的实现方式:在conv5-3的卷积feature map上用一个n*n的滑窗(论文中作者选用了n=3,即3*3的滑窗)生成一个长度为256(对应于ZF网络)或512(对应于VGG网络)维长度的全连接特征.然后在这个256维或512维的特征后产生两个分支的全连接层: (1)reg-layer,用于预测proposal的...
- 我的理解:就是特征降维,把不重要的信息过滤掉。 深度学习中的注意力机制 最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。 本文以机器翻译为例,深入浅出地介绍了深度学习中注意力机制的原理及关键计算机制,同时也... 我的理解:就是特征降维,把不重要的信息过滤掉。 深度学习中的注意力机制 最近两年,注意力模型(Attention Model)被广泛使用在自然语言处理、图像识别及语音识别等各种不同类型的深度学习任务中,是深度学习技术中最值得关注与深入了解的核心技术之一。 本文以机器翻译为例,深入浅出地介绍了深度学习中注意力机制的原理及关键计算机制,同时也...
- 1.卷积参数量的计算,若卷积层的输入featuremap的维度为Cin×Hin×Win,卷积核的大小为K1×K2, padding=P1×P2, stride=S1×S2,卷积核(filter)的数量为Cout,则输出特征图的大小为Cout×Hout×Wout,其中: Hout=⌊(H−K1+2P1)/S1⌋+1 Wout=⌊(W−K2+2P2)/S2... 1.卷积参数量的计算,若卷积层的输入featuremap的维度为Cin×Hin×Win,卷积核的大小为K1×K2, padding=P1×P2, stride=S1×S2,卷积核(filter)的数量为Cout,则输出特征图的大小为Cout×Hout×Wout,其中: Hout=⌊(H−K1+2P1)/S1⌋+1 Wout=⌊(W−K2+2P2)/S2...
- 原文:https://zhuanlan.zhihu.com/p/42924585 AutoML和神经架构搜索(NAS),是深度学习领域的新一代王者。 这些方法能快糙猛地搞定机器学习任务,简单有效,高度符合当代科技公司核心价值观。 它们背后原理如何,怎样使用? 技术博客TowardDataScience有一篇文章,就全面介绍了关于AutoML和NAS你需... 原文:https://zhuanlan.zhihu.com/p/42924585 AutoML和神经架构搜索(NAS),是深度学习领域的新一代王者。 这些方法能快糙猛地搞定机器学习任务,简单有效,高度符合当代科技公司核心价值观。 它们背后原理如何,怎样使用? 技术博客TowardDataScience有一篇文章,就全面介绍了关于AutoML和NAS你需...
- DEXTR-PyTorch 源码地址: 按照文章说是,自己点几个边缘关键点,自动扣图,自动计算边框 https://github.com/scaelles/DEXTR-PyTorch DEXTR-PyTorch 源码地址: 按照文章说是,自己点几个边缘关键点,自动扣图,自动计算边框 https://github.com/scaelles/DEXTR-PyTorch
- 背景 老大提了一个需求: gunicron 起多个进程的时候,如何保证pytorch的模型均匀分配到不同的gpu上,按道理,如果能拿到类似每个进程的序号,那分配起来应该都是简单的,那核心问题提炼出来了,如何拿到进程的序号 分析 顺手直接去找一个相关的问题和分析,https://github.com/benoitc/gunicorn/issues/1278 ,发现很多人都有同样... 背景 老大提了一个需求: gunicron 起多个进程的时候,如何保证pytorch的模型均匀分配到不同的gpu上,按道理,如果能拿到类似每个进程的序号,那分配起来应该都是简单的,那核心问题提炼出来了,如何拿到进程的序号 分析 顺手直接去找一个相关的问题和分析,https://github.com/benoitc/gunicorn/issues/1278 ,发现很多人都有同样...
- 注:A题我以为给新生出的,应该贼简单,是按顺序消灭,卡了十几分钟,成了最后一个ac的题,真是菜的真实。 Problem A: Description 白细胞是人体与疾病斗争的“卫士”。当病菌侵入人体体内时,白细胞能通过变形而穿过毛细血管壁,集中到病菌入侵部位,将病菌包围﹑吞噬。如果体内的白细胞的数量高于正常值,很可能是身体有了炎症。 ... 注:A题我以为给新生出的,应该贼简单,是按顺序消灭,卡了十几分钟,成了最后一个ac的题,真是菜的真实。 Problem A: Description 白细胞是人体与疾病斗争的“卫士”。当病菌侵入人体体内时,白细胞能通过变形而穿过毛细血管壁,集中到病菌入侵部位,将病菌包围﹑吞噬。如果体内的白细胞的数量高于正常值,很可能是身体有了炎症。 ...
- 题图 | Designed by Freepik 让我们从一道选择题开始今天的话题。 什么是神经网络?请选择以下描述正确的一项或多项。 A. 神经网络是一种数学函数,它接收输入并产生输出。B. 神经网络是一种计算图,多维数组流经其中。C. 神经网络由层组成,每层都具有「神经元」。D. 神经网络是一种通用函数逼近器。 你的答案是________。 正确答案是... 题图 | Designed by Freepik 让我们从一道选择题开始今天的话题。 什么是神经网络?请选择以下描述正确的一项或多项。 A. 神经网络是一种数学函数,它接收输入并产生输出。B. 神经网络是一种计算图,多维数组流经其中。C. 神经网络由层组成,每层都具有「神经元」。D. 神经网络是一种通用函数逼近器。 你的答案是________。 正确答案是...
- AI:机器学习、深度学习在实际应用(工业应用)中的步骤流程框架、实际场景(案例)之详细攻略 目录 机器学习/深度学习场景实际应用 1、分类问题案例 2、回归问题案例 3、聚类问题案例 机器学习/深度学习应用流程步骤 机器学习/深度学习场景实际应用 1、分类问题案例 Kaggle Titanic:Titanic: Machi... AI:机器学习、深度学习在实际应用(工业应用)中的步骤流程框架、实际场景(案例)之详细攻略 目录 机器学习/深度学习场景实际应用 1、分类问题案例 2、回归问题案例 3、聚类问题案例 机器学习/深度学习应用流程步骤 机器学习/深度学习场景实际应用 1、分类问题案例 Kaggle Titanic:Titanic: Machi...
- DL之模型调参:深度学习算法模型优化参数之对深度学习模型的超参数采用网格搜索进行模型调优(建议收藏) 目录 神经网络的参数调优 1、神经网络的通病—各种参数随机性 2、评估模型学习能力 DL之模型调参:深度学习算法模型优化参数之对深度学习模型的超参数采用网格搜索进行模型调优(建议收藏) 目录 神经网络的参数调优 1、神经网络的通病—各种参数随机性 2、评估模型学习能力
- ML之模型文件:机器学习、深度学习中常见的模型文件(.h5、.keras)简介、h5模型文件下载集锦、使用方法之详细攻略 目录 ML/DL中常见的模型文件(.h5、.keras)简介及其使用方法 一、.h5文件 1、常见的h5文件下载 二、.keras文件 1、模型的保存和载入 &... ML之模型文件:机器学习、深度学习中常见的模型文件(.h5、.keras)简介、h5模型文件下载集锦、使用方法之详细攻略 目录 ML/DL中常见的模型文件(.h5、.keras)简介及其使用方法 一、.h5文件 1、常见的h5文件下载 二、.keras文件 1、模型的保存和载入 &...
- DL之AF:机器学习/深度学习中常用的激活函数(sigmoid、softmax等)简介、应用、计算图实现、代码实现详细攻略 目录 激活函数(Activation functions)相关配图 各个激活函数 Step Function阶跃函数 sigmoid函数 DL之AF:机器学习/深度学习中常用的激活函数(sigmoid、softmax等)简介、应用、计算图实现、代码实现详细攻略 目录 激活函数(Activation functions)相关配图 各个激活函数 Step Function阶跃函数 sigmoid函数
- DL之VGGNet:VGGNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 VGG系列神经网络算法简介 1、网络架构 2、实验结果 VGG系列神经网络的架构详解 VGG系列集合以及对比 VGG16练习攻略二 1、VGG16实践经验 VGG19 1、关于imagenet-vgg-verydeep-19.mat模型简介 ... DL之VGGNet:VGGNet算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略 目录 VGG系列神经网络算法简介 1、网络架构 2、实验结果 VGG系列神经网络的架构详解 VGG系列集合以及对比 VGG16练习攻略二 1、VGG16实践经验 VGG19 1、关于imagenet-vgg-verydeep-19.mat模型简介 ...
- ML岗位面试:10.17早上—上海某银行人工智能算法岗位(偏算法,四大行之一)技术面试之项目讲解和激活函数的选择 反思:面试的时候,不应该太急,要慢而有条理、稳而有逻辑。因为下午有两个面试同时被叫到,某银行和某科技独角兽。先去了某银行的技术面试,整个过程中,面试官对我特别好,也许是自己的真心和实在,换来了对方的赞同和认可,整个过程非常nice,非常欣赏这位男技术lea... ML岗位面试:10.17早上—上海某银行人工智能算法岗位(偏算法,四大行之一)技术面试之项目讲解和激活函数的选择 反思:面试的时候,不应该太急,要慢而有条理、稳而有逻辑。因为下午有两个面试同时被叫到,某银行和某科技独角兽。先去了某银行的技术面试,整个过程中,面试官对我特别好,也许是自己的真心和实在,换来了对方的赞同和认可,整个过程非常nice,非常欣赏这位男技术lea...
上滑加载中
推荐直播
-
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day1)
2025/03/29 周六 09:00-18:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
基于开源鸿蒙+海思星闪开发板:嵌入式系统开发实战(Day2)
2025/03/30 周日 09:00-12:00
华为开发者布道师
本次为期两天的课程将深入讲解OpenHarmony操作系统及其与星闪技术的结合应用,涵盖WS63E星闪开发板的详细介绍、“OpenHarmony+星闪”的创新实践、实验环境搭建以及编写首个“Hello World”程序等内容,旨在帮助学员全面掌握相关技术并进行实际操作
回顾中 -
从AI基础到昇腾:大模型初探、DeepSeek解析与昇腾入门
2025/04/02 周三 16:00-17:30
不易 / 华为云学堂技术讲师
昇腾是华为研发的AI芯片,其具有哪些能力?我们如何基于其进行开发?本期直播将从AI以及大模型基础知识开始,介绍人工智能核心概念、昇腾AI基础软硬件平台以及昇腾专区,旨在为零基础或入门级学习者搭建从AI基础知识到昇腾技术的完整学习路径。
回顾中
热门标签