- 前言 transformer结构是google在17年的Attention Is All You Need论文中提出,在NLP的多个任务上取得了非常好的效果,可以说目前NLP发展都离不开transformer。最大特点是抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成。由于其出色性能以及对下游任务的友好性或者... 前言 transformer结构是google在17年的Attention Is All You Need论文中提出,在NLP的多个任务上取得了非常好的效果,可以说目前NLP发展都离不开transformer。最大特点是抛弃了传统的CNN和RNN,整个网络结构完全是由Attention机制组成。由于其出色性能以及对下游任务的友好性或者...
- 1、对卷积的困惑 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形... 1、对卷积的困惑 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 卷积这个概念,很早以前就学过,但是一直没有搞懂。教科书上通常会给出定义,给出很多性质,也会用实例和图形...
- 1. 引言 挑战与思路 搜索是大众点评App上用户进行信息查找的最大入口,是连接用户和信息的重要纽带。而用户搜索的方式和场景非常多样,并且由于对接业务种类多,流量差异大,为大众点评搜索(下文简称点评搜索)带来了巨大的挑战,具体体现在如下几个方面: 意图多样:用户查找的信息类型和方式多样。信息类型包括POI、榜单、UGC、攻略... 1. 引言 挑战与思路 搜索是大众点评App上用户进行信息查找的最大入口,是连接用户和信息的重要纽带。而用户搜索的方式和场景非常多样,并且由于对接业务种类多,流量差异大,为大众点评搜索(下文简称点评搜索)带来了巨大的挑战,具体体现在如下几个方面: 意图多样:用户查找的信息类型和方式多样。信息类型包括POI、榜单、UGC、攻略...
- 前言 CTR预估模型的特点: 毫无疑问这个任务的是个二分类任务,预测点击与否。 CTR 预估的特征一般是 用户的日志特征和画像特征,包含类别特征和数值型特征两种。 此任务的评估指标是 AUC 得分 或者 Logloss,facebook2014年的论文指出Logloss可能是相对来说较好的一个评估指标。 存在以下问题: ... 前言 CTR预估模型的特点: 毫无疑问这个任务的是个二分类任务,预测点击与否。 CTR 预估的特征一般是 用户的日志特征和画像特征,包含类别特征和数值型特征两种。 此任务的评估指标是 AUC 得分 或者 Logloss,facebook2014年的论文指出Logloss可能是相对来说较好的一个评估指标。 存在以下问题: ...
- 前言 个性化投放的"无人驾驶"平台何以自动化支持上千个场景的千人千面投放?商家、运营、小二,我们如何做到极致赋能和提效?面对旅行场景下用户需求低频、行为稀疏,特别是在营销活动大促期间,用户量迅速增长,用户的冷启动问题更加严峻,如何提高冷启动用户的推荐效果成为关键。另外,面对旅行场景下的丰富多样的的货品需求依赖关系,如何来组织和呈现给用... 前言 个性化投放的"无人驾驶"平台何以自动化支持上千个场景的千人千面投放?商家、运营、小二,我们如何做到极致赋能和提效?面对旅行场景下用户需求低频、行为稀疏,特别是在营销活动大促期间,用户量迅速增长,用户的冷启动问题更加严峻,如何提高冷启动用户的推荐效果成为关键。另外,面对旅行场景下的丰富多样的的货品需求依赖关系,如何来组织和呈现给用...
- 前言 随着大数据技术的进步,各种计算框架的涌现,数据仓库相关技术难题已经从离线数仓逐渐过渡到实时数仓,越来越多的企业对数据的实时性提出了严格的要求,如何满足企业的低延时的数据需求,如何看待批量处理和实时处理的关系,实时数仓应该如何分级,各家可能都有自己的理解,本文主要介绍网易的实时计算平台的建设实践以及网易对于实时数仓方面的一些规划及... 前言 随着大数据技术的进步,各种计算框架的涌现,数据仓库相关技术难题已经从离线数仓逐渐过渡到实时数仓,越来越多的企业对数据的实时性提出了严格的要求,如何满足企业的低延时的数据需求,如何看待批量处理和实时处理的关系,实时数仓应该如何分级,各家可能都有自己的理解,本文主要介绍网易的实时计算平台的建设实践以及网易对于实时数仓方面的一些规划及...
- 前言 如果我们想拿到一个句子的特征向量可以采用什么样的方式? 基于词袋模型(Bag of Words) Bag of Words : 主要思想是基于对句子中字出现的次数来构建句子向量,向量大小即为词表大小。可以采用的工具是gensim中的doc2bow TF-IDF:在BOW的基础上,考虑到每个字的重要程度,向量大小依然等于... 前言 如果我们想拿到一个句子的特征向量可以采用什么样的方式? 基于词袋模型(Bag of Words) Bag of Words : 主要思想是基于对句子中字出现的次数来构建句子向量,向量大小即为词表大小。可以采用的工具是gensim中的doc2bow TF-IDF:在BOW的基础上,考虑到每个字的重要程度,向量大小依然等于...
- 前言 大家可能经常会听到用户画像这个词,但是具体在做的时候又会觉得无从下手,或者认为只是常规的标签统计,这往往是一个误区。 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高... 前言 大家可能经常会听到用户画像这个词,但是具体在做的时候又会觉得无从下手,或者认为只是常规的标签统计,这往往是一个误区。 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高...
- 前言 KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions) 库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最... 前言 KKT最优化条件是Karush[1939],以及Kuhn和Tucker[1951]先后独立发表出來的。这组最优化条件在Kuhn和Tucker发表之后才逐渐受到重视,因此许多情况下只记载成库恩塔克条件(Kuhn-Tucker conditions) 库恩塔克条件(Kuhn-Tucker conditions)是非线性规划领域里最...
- 前言 在计算每一层的激活值时,我们要用到激活函数,之后才能确定这些激活值究竟是多少。根据每一层前面的激活、权重和偏置,我们要为下一层的每个激活计算一个值。但在将该值发送给下一层之前,我们要使用一个激活函数对这个输出进行缩放。 激活函数是神经网络中一个至关重要的部分。在这篇长文中,我将全面介绍六种不同的激活函数,并阐述它们各自... 前言 在计算每一层的激活值时,我们要用到激活函数,之后才能确定这些激活值究竟是多少。根据每一层前面的激活、权重和偏置,我们要为下一层的每个激活计算一个值。但在将该值发送给下一层之前,我们要使用一个激活函数对这个输出进行缩放。 激活函数是神经网络中一个至关重要的部分。在这篇长文中,我将全面介绍六种不同的激活函数,并阐述它们各自...
- 前言 文本生成,旨在利用NLP技术,根据给定信息产生特定目标的文本序列,应用场景众多,并可以通过调整语料让相似的模型框架适应不同应用场景。本文重点围绕Encoder-Decoder结构,列举一些以文本摘要生成或QA系统文本生成为实验场景的技术进展。 Seq2seq框架 2014年NLP界有两份重要的成果,Learning Phra... 前言 文本生成,旨在利用NLP技术,根据给定信息产生特定目标的文本序列,应用场景众多,并可以通过调整语料让相似的模型框架适应不同应用场景。本文重点围绕Encoder-Decoder结构,列举一些以文本摘要生成或QA系统文本生成为实验场景的技术进展。 Seq2seq框架 2014年NLP界有两份重要的成果,Learning Phra...
- 序 声明:以下是博主精心整理的机器学习和AI系列文章,博主后续会不断更新该领域的知识: 人工智能AI实战系列代码全解析 手把手教你ML机器学习算法源码全解析 有需要的小伙伴赶紧订阅吧。 人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine ... 序 声明:以下是博主精心整理的机器学习和AI系列文章,博主后续会不断更新该领域的知识: 人工智能AI实战系列代码全解析 手把手教你ML机器学习算法源码全解析 有需要的小伙伴赶紧订阅吧。 人工智能的浪潮正在席卷全球,诸多词汇时刻萦绕在我们耳边:人工智能(Artificial Intelligence)、机器学习(Machine ...
- 前言 在本文中,将详细介绍多种类型的推荐系统,具体介绍基于近邻算法的推荐引擎、个性化推荐引擎、基于模型的推荐系统和混合推荐引擎等,并分析介绍每种推荐系统的优缺点。 主要介绍的不同类型的推荐系统包括: 近邻算法推荐引擎:基于用户的协同过滤和基于项目的协同过滤; 个性化推荐引擎:基于内容的推荐引擎和情境感知推荐引擎; ... 前言 在本文中,将详细介绍多种类型的推荐系统,具体介绍基于近邻算法的推荐引擎、个性化推荐引擎、基于模型的推荐系统和混合推荐引擎等,并分析介绍每种推荐系统的优缺点。 主要介绍的不同类型的推荐系统包括: 近邻算法推荐引擎:基于用户的协同过滤和基于项目的协同过滤; 个性化推荐引擎:基于内容的推荐引擎和情境感知推荐引擎; ...
- 前言 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 高精度地图之拓扑地图的应用 传统拓扑地图 我们先了解下传统拓扑地图,这是从地图ap... 前言 以下是我为大家准备的几个精品专栏,喜欢的小伙伴可自行订阅,你的支持就是我不断更新的动力哟! MATLAB-30天带你从入门到精通 MATLAB深入理解高级教程(附源码) tableau可视化数据分析高级教程 高精度地图之拓扑地图的应用 传统拓扑地图 我们先了解下传统拓扑地图,这是从地图ap...
- 前言 自动驾驶中的感知技术如同驾驶员的"眼睛"和"耳朵",在高速重卡的场景中,感知技术将面临哪些挑战?在量产化道路中,如何让感知技术与产品相结合去看清和理解足够的场景? 这里,感知的定义就不多介绍了,感知是我们自动驾驶的"眼睛"和"耳朵",是自动驾驶信息获取的第一步,所以感知是非常基础和关键的一个环节。这需要在我们的自动驾驶... 前言 自动驾驶中的感知技术如同驾驶员的"眼睛"和"耳朵",在高速重卡的场景中,感知技术将面临哪些挑战?在量产化道路中,如何让感知技术与产品相结合去看清和理解足够的场景? 这里,感知的定义就不多介绍了,感知是我们自动驾驶的"眼睛"和"耳朵",是自动驾驶信息获取的第一步,所以感知是非常基础和关键的一个环节。这需要在我们的自动驾驶...
上滑加载中
推荐直播
-
仓颉编程语言开源创新人才培养经验分享
2025/08/06 周三 19:00-20:00
张引 -华为开发者布道师-高校教师
热情而富有活力的仓颉社区为学生的学习提供了一个充满机遇和挑战的平台。本次直播探讨如何运用社区的力量帮助同学们变身为开源开发者,从而完成从学生到工程师身份的转变。
回顾中 -
“全域洞察·智控未来” ——云资源监控实战
2025/08/08 周五 15:00-16:00
星璇 华为云监控产品经理,霄图 华为云监控体验设计师,云枢 华为云可观测产品经理
本期直播深度解析全栈监控技术实践,揭秘华为云、头部企业如何通过智能监控实现业务零中断,分享高可用系统背后的“鹰眼系统”。即刻预约,解锁数字化转型的运维密码!
即将直播
热门标签