- 数据分析——常见数据指标汇总 数据分类用户数据指标行为数据指标产品数据指标推广付费指标 数据分类 用户数据:反映用户的基本信息等。 行为数据:做过什么,如页面停留时间,购买等。... 数据分析——常见数据指标汇总 数据分类用户数据指标行为数据指标产品数据指标推广付费指标 数据分类 用户数据:反映用户的基本信息等。 行为数据:做过什么,如页面停留时间,购买等。...
- 图形的适用场景 关注分类变量各分类的比例,用饼图 关注变量的频率分布,用直方图 关注变量的变化趋势,用折线图 关注两个变量的相关,用散点图 展示一个变量的集中趋势和离散趋势,用箱图 123456789 导入库 # -*- coding: utf-8 -*- # @File : pylot_demo.py # @Date : 2018-05-14 imp... 图形的适用场景 关注分类变量各分类的比例,用饼图 关注变量的频率分布,用直方图 关注变量的变化趋势,用折线图 关注两个变量的相关,用散点图 展示一个变量的集中趋势和离散趋势,用箱图 123456789 导入库 # -*- coding: utf-8 -*- # @File : pylot_demo.py # @Date : 2018-05-14 imp...
- 基本统计(含排序) 分布/累计统计 数据特征 相关性、周期性等 数据挖掘(形成知识) 一组数据表达一个或多个含义 摘要 - 数据形成有损特征的过程 pandas库的数据排序 .sort_index()方法在指定轴上根据索引进行排序,默认升序 .sort_index(axis=0, ascending=True) .sort_values()方法在指定轴上根据... 基本统计(含排序) 分布/累计统计 数据特征 相关性、周期性等 数据挖掘(形成知识) 一组数据表达一个或多个含义 摘要 - 数据形成有损特征的过程 pandas库的数据排序 .sort_index()方法在指定轴上根据索引进行排序,默认升序 .sort_index(axis=0, ascending=True) .sort_values()方法在指定轴上根据...
- 基本的统计分析函数 适用于Series和DataFrame类型 方法说明.sum()计算数据的总和,按0轴计算,下同.count()非NaN值的数量.mean() .median()计算数据的算术平均值、算术中位数.var() .std()计算数据的方差、标准差.min().max()计算数据的最小值、最大值.describe()针对0轴(各列)的统计汇总 适用于... 基本的统计分析函数 适用于Series和DataFrame类型 方法说明.sum()计算数据的总和,按0轴计算,下同.count()非NaN值的数量.mean() .median()计算数据的算术平均值、算术中位数.var() .std()计算数据的方差、标准差.min().max()计算数据的最小值、最大值.describe()针对0轴(各列)的统计汇总 适用于...
- Pandas是Python第三方库,提供高性能易用数据类型和分析工具 官网文档:http://pandas.pydata.org/pandas-docs/stable/10min.html 引入: import pandas as pd 1 Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用 两个数据类型:Series, DataFr... Pandas是Python第三方库,提供高性能易用数据类型和分析工具 官网文档:http://pandas.pydata.org/pandas-docs/stable/10min.html 引入: import pandas as pd 1 Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用 两个数据类型:Series, DataFr...
- 算术运算法则 算术运算根据行列索引,补齐后运算, 运算默认产生浮点数 补齐时缺项填充NaN(空值) 二维和一维、一维和零维间为广播运算 采用+ ‐* /符号进行的二元运算产生新的对象 方法形式的运算 方法说明.add(d, **argws)类型间加法运算,可选参数.sub(d, **argws)类型间减法运算,可选参数.mul(d, **argws)类型间... 算术运算法则 算术运算根据行列索引,补齐后运算, 运算默认产生浮点数 补齐时缺项填充NaN(空值) 二维和一维、一维和零维间为广播运算 采用+ ‐* /符号进行的二元运算产生新的对象 方法形式的运算 方法说明.add(d, **argws)类型间加法运算,可选参数.sub(d, **argws)类型间减法运算,可选参数.mul(d, **argws)类型间...
- numpy 科学计算基础库 官方文档:https://docs.scipy.org/doc/numpy/user/quickstart.html 列表和数组区别 列表:数据类型可以不同 数组:数据类型相同 12 N维数组对象 ndarray dimension 维度: 一组数据的组织形式 轴axis 数据维度 秩rank 轴的数量 ndarray数组一般要求所... numpy 科学计算基础库 官方文档:https://docs.scipy.org/doc/numpy/user/quickstart.html 列表和数组区别 列表:数据类型可以不同 数组:数据类型相同 12 N维数组对象 ndarray dimension 维度: 一组数据的组织形式 轴axis 数据维度 秩rank 轴的数量 ndarray数组一般要求所...
- DataFrame对象操作 重新索引 .reindex()能够改变或重排Series和DataFrame索引 .reindex(index=None, columns=None,…)的参数 参数说明index, columns新的行列自定义索引fill_value重新索引中,用于填充缺失位置的值method填充方法, ffill当前值向前填充,bfill向后填充... DataFrame对象操作 重新索引 .reindex()能够改变或重排Series和DataFrame索引 .reindex(index=None, columns=None,…)的参数 参数说明index, columns新的行列自定义索引fill_value重新索引中,用于填充缺失位置的值method填充方法, ffill当前值向前填充,bfill向后填充...
- argsort函数 返回的是数组值的索引值 import numpy as np x = np.array([3, 1, 4, 2, 5]) # 从小到大 np.argsort(x) Out[4]: array([1, 3, 0, 2, 4]) # 从大到小 np.argsort(-x) Out[5]: array([4, 2, 0, 3, 1])123456... argsort函数 返回的是数组值的索引值 import numpy as np x = np.array([3, 1, 4, 2, 5]) # 从小到大 np.argsort(x) Out[4]: array([1, 3, 0, 2, 4]) # 从大到小 np.argsort(-x) Out[5]: array([4, 2, 0, 3, 1])123456...
- DataFrame类型 DataFrame类型由共用相同索引的一组列组成 DataFrame是一个表格型的数据类型,每列值类型可以不同 DataFrame既有行索引、也有列索引 index axis=0 axis=1 column DataFrame常用于表达二维数据,但可以表达多维数据 DataFrame类型可以由如下类型创建: 二维ndarray对象... DataFrame类型 DataFrame类型由共用相同索引的一组列组成 DataFrame是一个表格型的数据类型,每列值类型可以不同 DataFrame既有行索引、也有列索引 index axis=0 axis=1 column DataFrame常用于表达二维数据,但可以表达多维数据 DataFrame类型可以由如下类型创建: 二维ndarray对象...
- numpy.random随机函数 rand(d0, d1,...dn) 随机数组, 浮点数,[0, 1)均匀分布 randn(d0, d1,...dn) 随机数组,正态分布 randint(low, high, shape) 指定随机范围 seed(s) 随机种子 shuffle(a) 随机排列第一轴, 改变数组a permutation(a) 根据第一轴返回乱序数组... numpy.random随机函数 rand(d0, d1,...dn) 随机数组, 浮点数,[0, 1)均匀分布 randn(d0, d1,...dn) 随机数组,正态分布 randint(low, high, shape) 指定随机范围 seed(s) 随机种子 shuffle(a) 随机排列第一轴, 改变数组a permutation(a) 根据第一轴返回乱序数组...
- Key and Imports In this cheat sheet, we use the following shorthand: df | Any pandas DataFrame object s | Any pandas Series object You’ll also need to perform the following imports t... Key and Imports In this cheat sheet, we use the following shorthand: df | Any pandas DataFrame object s | Any pandas Series object You’ll also need to perform the following imports t...
- Key and Imports In this cheat sheet, we use the following shorthand: arr | A NumPy Array object You’ll also need to import numpy to get started: import numpy as np Importing/exporti... Key and Imports In this cheat sheet, we use the following shorthand: arr | A NumPy Array object You’ll also need to import numpy to get started: import numpy as np Importing/exporti...
- 时序数据的异常点是指序列中存在模式不一致的点(如时序数据超出正常范围的上/下界,突然的上升或下降,趋势改变)。时序数据的异常检测旨在快速准确的找到这些异常点。代码块导入在NAIE训练平台的JupyterLab界面操作,不需要手动添加这一部分,因为在新创建的特征工程下已经包含了导入代码。import os os.chdir("/home/ma-user/work/test_ano... 时序数据的异常点是指序列中存在模式不一致的点(如时序数据超出正常范围的上/下界,突然的上升或下降,趋势改变)。时序数据的异常检测旨在快速准确的找到这些异常点。代码块导入在NAIE训练平台的JupyterLab界面操作,不需要手动添加这一部分,因为在新创建的特征工程下已经包含了导入代码。import os os.chdir("/home/ma-user/work/test_ano...
- 时间序列分析,即输入特征都是与时间相关的数据,同时需要考虑周期、趋势、节假日、突变等因素,通过一些手段来分析时间序列的特点,发现其中的变化规律,并用于预测未来时序数据的统计技术。分析时间序列,进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。代码块导入在NAIE训练平台的JupyterLab界面操作时,不需要手动添加这一部分,因为在新创建的特... 时间序列分析,即输入特征都是与时间相关的数据,同时需要考虑周期、趋势、节假日、突变等因素,通过一些手段来分析时间序列的特点,发现其中的变化规律,并用于预测未来时序数据的统计技术。分析时间序列,进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。代码块导入在NAIE训练平台的JupyterLab界面操作时,不需要手动添加这一部分,因为在新创建的特...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签