- 多层感知机的基本知识 我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。 隐藏层 下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有... 多层感知机的基本知识 我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。 隐藏层 下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有...
- 我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10. import numpy as npimport torchimport torch.nn as nnimport torch.optim as optimi... 我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10. import numpy as npimport torchimport torch.nn as nnimport torch.optim as optimi...
- 对输入的标准化(浅层模型) 处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。 标准化处理输入数据使各个特征的分布相近 批量归一化(深度模型) 利用小批量上的均值和标准差,不断调整神经... 对输入的标准化(浅层模型) 处理后的任意一个特征在数据集中所有样本上的均值为0、标准差为1。 标准化处理输入数据使各个特征的分布相近 批量归一化(深度模型) 利用小批量上的均值和标准差,不断调整神经...
- 样式迁移 我们介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修... 样式迁移 我们介绍如何使用卷积神经网络自动将某图像中的样式应用在另一图像之上,即样式迁移(style transfer)。这里我们需要两张输入图像,一张是内容图像,另一张是样式图像,我们将使用神经网络修...
- 本文首发于公众号”计算机视觉cv“ Pytorch优势 聊聊为什么使用Pytorch,个人觉得Pytorch比Tensorflow对新手更为友善,而且现在Pytorch在学术界使用的得更多,大有逆袭Tensorflow之势。最近两年的顶会文章中,代码用Pytorch的比Tensorflow多。大家如果对... 本文首发于公众号”计算机视觉cv“ Pytorch优势 聊聊为什么使用Pytorch,个人觉得Pytorch比Tensorflow对新手更为友善,而且现在Pytorch在学术界使用的得更多,大有逆袭Tensorflow之势。最近两年的顶会文章中,代码用Pytorch的比Tensorflow多。大家如果对...
- 图像增广 在深度卷积神经网络里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而... 图像增广 在深度卷积神经网络里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而...
- cfg是配置文件,一般为了代码的可读性,把一层层的神经网络用cfg格式文件保存,用的时候可以直接读取调用,简单轻便。以下用一个例子来了解。 下面cfg文件是yolov3的网络层次: [net] # Testing batch=1 subdivisions=1 # Training # batch=64 # subdivisions=... cfg是配置文件,一般为了代码的可读性,把一层层的神经网络用cfg格式文件保存,用的时候可以直接读取调用,简单轻便。以下用一个例子来了解。 下面cfg文件是yolov3的网络层次: [net] # Testing batch=1 subdivisions=1 # Training # batch=64 # subdivisions=...
- RNN: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ycy6d8iB-1584285348969)(https://cdn.kesci.com/upload/imag... RNN: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ycy6d8iB-1584285348969)(https://cdn.kesci.com/upload/imag...
- 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 假设一个层数为 ... 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion)。 当神经网络的层数较多时,模型的数值稳定性容易变差。 假设一个层数为 ...
- 1. 基本配置 导入包和版本查询 import torchimport torch.nn as nnimport torchvisionprint(torch.__version__)print(torch.version.cuda)print(torch.backends.cudnn.version())print(torch... 1. 基本配置 导入包和版本查询 import torchimport torch.nn as nnimport torchvisionprint(torch.__version__)print(torch.version.cuda)print(torch.backends.cudnn.version())print(torch...
- 时间图神经网络PyTorch Geometric Temporal 1 简介 PyTorch Geometric Temporal是一个用于PyTorch Geometric的时间图神经网络扩展库。它基于开源深度学习和图形处理库。 PyTorch Geometric Temporal包含最先进的深度学习和参数学习方法来处理时空信号... 时间图神经网络PyTorch Geometric Temporal 1 简介 PyTorch Geometric Temporal是一个用于PyTorch Geometric的时间图神经网络扩展库。它基于开源深度学习和图形处理库。 PyTorch Geometric Temporal包含最先进的深度学习和参数学习方法来处理时空信号...
- 一、张量的科学运算 1 进行数值调整 t = torch.randn(5)t# tensor([ 0.3806, 0.9064, -1.9179, 2.0816, -0.4153]) 1.1 返回绝对值 torch.abs(t... 一、张量的科学运算 1 进行数值调整 t = torch.randn(5)t# tensor([ 0.3806, 0.9064, -1.9179, 2.0816, -0.4153]) 1.1 返回绝对值 torch.abs(t...
- 目录 pytorch 2维度切分和拼接 pytorch 3维度的切分和拼接: pytorch 4维度的切分和拼接 pytorch 2维度切分和拼接 第二个参数是切块大小: import torch if __name__ == & 目录 pytorch 2维度切分和拼接 pytorch 3维度的切分和拼接: pytorch 4维度的切分和拼接 pytorch 2维度切分和拼接 第二个参数是切块大小: import torch if __name__ == &
- Pytorch库的基本架构介绍 今天我就将PyTorch常用的模块做一个总结梳理。 首先要说明的是PyTorch这是torch的Python版本,所以导入的是torch而不是Pytorch: import torch 1 运行基础 torch.tensor:基础数据结构 torch.autograd:自... Pytorch库的基本架构介绍 今天我就将PyTorch常用的模块做一个总结梳理。 首先要说明的是PyTorch这是torch的Python版本,所以导入的是torch而不是Pytorch: import torch 1 运行基础 torch.tensor:基础数据结构 torch.autograd:自...
- 目录 获取模型参数维度 模型迁移动态匹配 获取模型参数维度 model = MobileFormer(**args) model_dict=model.state_dict() for to_k,to_v in model_dict.items(): try: ... 目录 获取模型参数维度 模型迁移动态匹配 获取模型参数维度 model = MobileFormer(**args) model_dict=model.state_dict() for to_k,to_v in model_dict.items(): try: ...
上滑加载中
推荐直播
-
HDC深度解读系列 - Serverless与MCP融合创新,构建AI应用全新智能中枢
2025/08/20 周三 16:30-18:00
张昆鹏 HCDG北京核心组代表
HDC2025期间,华为云展示了Serverless与MCP融合创新的解决方案,本期访谈直播,由华为云开发者专家(HCDE)兼华为云开发者社区组织HCDG北京核心组代表张鹏先生主持,华为云PaaS服务产品部 Serverless总监Ewen为大家深度解读华为云Serverless与MCP如何融合构建AI应用全新智能中枢
回顾中 -
关于RISC-V生态发展的思考
2025/09/02 周二 17:00-18:00
中国科学院计算技术研究所副所长包云岗教授
中科院包云岗老师将在本次直播中,探讨处理器生态的关键要素及其联系,分享过去几年推动RISC-V生态建设实践过程中的经验与教训。
回顾中 -
一键搞定华为云万级资源,3步轻松管理企业成本
2025/09/09 周二 15:00-16:00
阿言 华为云交易产品经理
本直播重点介绍如何一键续费万级资源,3步轻松管理成本,帮助提升日常管理效率!
回顾中
热门标签